To be the most creative Lithium battery company, and make outstanding contributions to sustainable development.

EVE INR21700/40P Test Report

1. Cell Specification

2. Electrical Performance

3. Safety Performance

4. Certification

CONTENTS

Commercial secrets of EVE, not allowed to spread without permission.

1. Cell Specification

INR21700/40P	No.	Ite	em	Specification
	1	Nominal Capacity	0.2C	4000mAh
	2	Nominal Energy	0.2C	14.4Wh
	3	Dimension	Diameter	21.15±0.10mm
	4	Dimension	Height	70.15±0.15mm
	5	We	ight	70.0g Max
	М	Operating V	oltage Range	4.2V~2.5V
SZ	7	Incesses	ACR	≤12mΩ
	8	Impedance	DCR	≤20mΩ
	9	Change Cumput	Standard	2.0A
	10	Charge Current	Max.	6A
	11	Discharge Consent	Standard	0.8A
An	12	Discharge Current	Max.	50A
VE	13	Cycle life (RT	C, 4.2V~2.5V)	6A/30A 300th 60%
	14	Operation Temperature Range	Charge	0~60°C
For reference only	15	(Cell surface)	Discharge	-20~80°C

2. Electrical Performance -- Summary

No.	. Item		Unit	Spec	INR21700/40P(Batch LM)	Sample Size	Page
1	Capacity@0.20	2	mAh	≥ 3950	4067.0	25262 pcs	4
2	Immadance	ACR	mΩ	≤ 12	9.1	25262 pcs	5
3	Impedance	DCR	mΩ	≤ 20	13.0	5 pcs	6
4		0.8A	%	≥ 100	103.8	3 pcs	7
5		10A	%	100	100.0	3 pcs	7
6	Rate Discharge	20A	%	≥ 95	102.5	3 pcs	7
7		30A	%	≥ 93	101.8	3 pcs	7
8		40A	%	≥ 90	99.4	3 pcs	7
9		-20°C	%	≥ 60	89.3	3 pcs	8
10		-10°C	%	≥ 75	92.2	3 pcs	8
11	Different Temperature 10A Discharge	0°C	%	≥ 80	94.6	3 pcs	8
12		25°C	%	100	100.0	3 pcs	8
13		60°C	%	≥ 90	103.3	3 pcs	8
14		(6A/10A)600th	%	≥ 60	87.5	3 pcs	9
15	C1. 1:6-@250C	(6A/20A)600th	%	≥ 60	82.6	3 pcs	11
16	- Cycle Life@25°C	(6A/30A)300th	%	≥ 60	82.6	3 pcs	13
17		(6A/40A)300 th	%	≥ 60	85.8	3 pcs	15
18	Storage	Cap. Retention	%	≥ 80	85.9	5 pcs	17
19	(60°C 30D)	Cap. Recovery	%	≥ 90	96.9	5 pcs	17

2. Electrical Performance – 0.2C Capacity

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=2A and CV=4.2V, 0.1A cut off. Rest for 10min.
- At $25\pm2^{\circ}$ C, test capacity by 0.8A to 2.5V.

2. Electrical Performance -- ACR

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=2A and CV=3.5V, 0.1A cut off. Rest for 10min.
- At 25±2°C, test ACR by AC impedance at 1kHz.

2. Electrical Performance -- DCR

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=3A and CV=4.2V, 0.05A cut off. Rest for 3h.
- At 25±2°C, test DCR by discharging 0.1A/10s-10A/1s-0.1A/10s-10A/1s-0.1A/10s-10A/1s.
- DCR= $(V1-V2)/(I2-I1) \rightarrow V1-32sec, V2-33sec, I1-32sec, I2-33sec.$

2. Electrical Performance -- Rate Discharge

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- At 25±2°C, discharge by 0.8A/10A/20A/30A/40A to 2.5V. Rest for 30min.

Capacity (%)	0.8A	10A	20A	30A	40A
1	103.8	100.0	102.5	101.8	99.5
2	103.8	100.0	102.5	101.8	99.5
3	103.8	100.0	102.6	101.8	99.3
Avg.	103.8	100.0	102.5	101.8	99.4
Spec	≥ 100	100	≥95	≥ 93	≥ 90

2. Electrical Performance -- Different Temperature 10A Discharge

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- At -20/-10/0/25/60±2°C rest 3h, discharge by 10A to 2.5V.

Capacity (%)	-20°C	-10°C	0°C	25°C	60°C
1	89.3	92.1	94.4	100.0	103.3
2	89.4	92.3	94.7	100.0	103.1
3	89.3	92.2	94.6	100.0	103.5
Avg.	89.3	92.2	94.6	100.0	103.3
Spec	≥ 60	≥ 75	≥ 80	100	≥90

2. Electrical Performance -- 6A/10A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=10A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 600 times.

Capacity Retention (%)	1#	2#	3#	Avg.	Spec
600 cycles	88.1	86.9	87.6	87.5	≥ 60

2. Electrical Performance -- 6A/10A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=10A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 600 times.

Energy Retention (%)	1#	2#	3#	Avg.	Spec
600 cycles	87.5	86.1	87.1	86.9	/

2. Electrical Performance -- 6A/20A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=20A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 600 times.

Capacity Retention (%)	1#	2#	3#	Avg.	Spec
600 cycles	82.2	83.2	82.4	82.6	≥ 60

2. Electrical Performance -- 6A/20A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=20A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 600 times.

Energy Retention (%)	1#	2#	3#	Avg.	Spec
600 cycles	80.4	81.7	80.6	80.9	/

2. Electrical Performance -- 6A/30A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=30A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 300 times.

Capacity Retention (%)	1#	2#	3#	Avg.	Spec
300 cycles	83.0	83.0	81.9	82.6	≥ 60

2. Electrical Performance -- 6A/30A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=30A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 300 times.

Energy Retention (%)	1#	2#	3#	Avg.	Spec
300 cycles	82.4	81.7	83.3	82.5	/

2. Electrical Performance -- 6A/40A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=40A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 300 times.

Capacity Retention (%)	1#	2#	3#	Avg.	Spec
300 cycles	85.1	86.4	86.0	85.8	≥ 60

2. Electrical Performance -- 6A/40A Cycle Life@25°C

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then charge by CC=6A and CV=4.2V, 0.1A cut off. Rest for 10min.
- Discharge by CC=40A to 2.5V or 75°C cut off. Rest for 30min. Cycle for 300 times.

Capacity Retention (%)	1#	2#	3#	Avg.	Spec
300 cycles	82.7	84.0	83.7	83.5	/

2. Electrical Performance -- Storage

- At 25±2°C, discharge by CC=0.8A to 2.5V. Rest for 10min. Then Charge by CC=6A and CV=4.2V, 0.1A cut off. rest 10mins. Discharge by 10A to 2.5V, record initial capacity.
- Stored at 60±2°C for 30 days, then discharge by 10A to 2.5V, record retention capacity, repeat step1 for 3 cycles and record recovery capacity.

Item	1#	2#	3#	4#	5#	Avg.	Spec
Capacity% Retention	85.9	86.1	86.5	85.5	85.4	85.9	≥ 80
Capacity% Recovery	96.7	96.7	97.0	97.1	97.1	96.9	≥ 90

3. Safety Performance -- Summary

No.	Item	Test Condition	Specification	Standard	Sample Size	Conclusion
1	Overcharge	12A charge to 8.4V	No fire, no explosion	UN38.3	3 pcs	Pass
2	External Short Circuit	$80\pm20m\Omega$	No fire, no explosion	UL1642	3 pcs	Pass
3	Force Discharge	orce Discharge 1C discharge 90min No fire,		IEC62133	3 pcs	Pass
4	Heating Test	130±2°C 10min	No fire, no explosion	UL1642	3 pcs	Pass
5	Low Pressure Test	11.6kPa 6hours	< 10% OCV drop	UN38.3	3 pcs	Pass
6	Drop Test	1.0m drop	No fire, no explosion	IEC62133	3 pcs	Pass
7	Vibration Test	7Hz→200Hz→7Hz 15min 12times	No fire, no explosion, no leakage; < 10%OCV drop	UN38.3	3 pcs	Pass

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $100/80/60/40/20/10/5m\Omega$ at RT.
- No fire and no explosion.

Desistance		Before Test		After Test								
(mΩ)	No.	ACIR (mΩ)	Voltage (V)	Discharge Time (s)	Max. Current (A)	Max. Temp. (°C)	Al Tab Melt	CID Open	Vent Open	Fire	Explosion	Result
	1#	8.7	4.186	551	37	96	No	No	No	No	No	Pass
100mΩ	2#	8.7	4.186	551	37	99	No	No	No	No	No	Pass
	3#	9.0	4.185	553	37	98	No	No	No	No	No	Pass
	1#	8.8	4.189	467	45	116	No	Yes	No	No	No	Pass
80mΩ	2#	8.8	4.185	467	45	114	No	Yes	No	No	No	Pass
	3#	9.0	4.189	475	45	116	No	Yes	No	No	No	Pass
	1#	8.8	4.182	306	55	130	No	Yes	No	No	No	Pass
60mΩ	2#	8.8	4.187	310	54	130	No	Yes	No	No	No	Pass
	3#	8.9	4.185	310	54	130	No	Yes	No	No	No	Pass
	1#	8.9	4.182	116	75	128	No	Yes	No	No	No	Pass
40mΩ	2#	9.0	4.184	116	76	127	No	Yes	No	No	No	Pass
	3#	9.1	4.187	116	75	127	No	Yes	No	No	No	Pass
	1#	9.0	4.183	27	122	93	Yes	No	No	No	No	Pass
20mΩ	2#	8.8	4.189	26	123	93	Yes	No	No	No	No	Pass
	3#	9.1	4.188	26	122	93	Yes	No	No	No	No	Pass
	1#	8.9	4.185	4	180	50	Yes	No	No	No	No	Pass
10mΩ	2#	8.7	4.183	5	187	55	Yes	No	No	No	No	Pass
	3#	8.8	4.186	5	184	52	Yes	No	No	No	No	Pass
	1#	8.8	4.186	2	223	43	Yes	No	No	No	No	Pass
5mΩ	2#	8.8	4.183	2	227	43	Yes	No	No	No	No	Pass
	3#	8.9	4.185	2	224	43	Yes	No	No	No	No	Pass

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $100m\Omega$ at RT.
- No fire and no explosion.

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $80m\Omega$ at RT.
- No fire and no explosion.

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $60m\Omega$ at RT.
- No fire and no explosion.

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $40m\Omega$ at RT.
- No fire and no explosion.

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $20m\Omega$ at RT.
- No fire and no explosion.

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $10m\Omega$ at RT.
- No fire and no explosion.

- Charge by CC=2A and CV=4.2V, 0.1A cut off, then short-circuited by connecting with a circuit of $5m\Omega$ at RT.
- No fire and no explosion.

3. Safety Performance -- Other Safety Summary

Item	Overcharge		Force D	ischarge	Heating Test		
Test Standard	UN	38.3	IECe	52133	UL1642		
	Before	After	Before	After	Before	After	
Picture	- Ullerangen under Körteren D - Killerangen under Körteren D - Killerangen under Körteren D	- 6181.941 (assessment in 1919) (b)	- Alle terr constrained and and - Alle terr constrained and and - Alle terr constrained and and and and - Alle terr constrained and and and and and and and and and an	- COLUMN AND MAN WELLS N.	8/0 (This manufall) 89 (This manufall) 88 (This manufall)	Blo (Blo (Booking and A	
Test Result	No fire, no explosion		No fire, no	explosion	No fire, no explosion		

Item	Low Pressure Test		Droj	o Test	Vibration Test		
Test Standard	UN38.3		IECe	52133	UN38.3		
	Before	After	Before	After	Before	After	
Picture	- (()))))))) - (()))))) - (()))))) - ()))))) - ())))))) - ())))))))) - ())))))))))	• (10.10.10.10.0000.0000) • (10.10.10.0000.0000) • (10.10.10.10.0000.0000.0000 • (10.10.10.10.0000.0000.0000 • (10.10.10.10.0000.0000.0000.0000 • (10.10.10.10.10.0000.0000.0000.0000 • (10.10.10.10.0000.0000.0000.0000.0000 • (10.10.10.10.0000.0000.0000.0000.0000 • (10.10.10.10.0000.0000.0000.0000.0000 • (10.10.10.10.0000.0000.0000.0000.0000.0		() - () a a min maninant)	· (()))))) · · · · · · · · · · · · · · ·	• (1999) 100 (10) • • (1999) 100 • • (1999)	
Test Result	< 10% OCV drop		No fire, no explosion		No fire, no explosion, no leakage; < 10%OCV drop		

THANK YOU